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“A theory is something nobody believes, except the person who made it.
An experiment is something everybody believes, except the person who
made it.”

(Unknown)
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Pure states and truth objects

In classical theory, a pure state is nothing but a point of state
space.

Since the spectral presheaf Σ has no points, we must use another
description for (pure) states, namely by certain elements of
P(PΣ). (In classical theory, both descriptions agree.)

Let ψ be a unit vector in Hilbert space. For each V ∈ V(H), we
define

Tψ(V ) := {S ⊆ ΣV | 〈ψ|P̂S |ψ〉 = 1}
= {S ⊆ ΣV | P̂S ≥ δ(P̂ψ)V }.

We call Tψ = (Tψ(V ))V∈V(H) the truth object corresponding to
ψ.
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The subobject classifier in SetV(H)op

The subobject classifier Ω in a topos of presheaves is the presheaf
of sieves.

A sieve in a poset like V(H) is particularly simple: let V ∈ V(H).
A sieve α on V is a collection of subalgebras V ′ ⊆ V such that,
whenever V ′ ∈ α and V ′′ ⊂ V ′, then V ′′ ∈ α (so α is a downward
closed set).

The maximal sieve on V is ↓V = {V ′ ∈ V(H) | V ′ ⊆ V }.

A truth value is a global section of the presheaf Ω.

The global section consisting entirely of maximal sieves is inter-
preted as ’totally true’, the global section consisting of empty
sieves as ’totally false’.
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Truth values from truth objects

We saw that subobjects of Σ represent propositions about the
physical system under consideration, and that states are
represented by truth objects.

Let S ∈ Sub Σ be such a subobject, and let Tψ be a truth object.

Let
ν(pSq ∈ Tψ)V := {V ′ ⊆ V | S(V ′) ∈ Tψ(V ′)}.

One can show that this is a sieve on V . Moreover, for varying V ,
these sieves form a global section

ν(pSq ∈ Tψ) ∈ ΓΩ.

This is the truth value of the proposition represented by S , given
by the truth object Tψ.
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Natural transformations from operators

We want to represent physical quantities as natural transfor-
mations from the spectral presheaf to some presheaf related to the
real numbers. Whenever V ′ ⊆ V , this will give a commutative
diagram

R(V ) R(V ′)-
ρ(iV ′V )

ΣV Σ′V
-Σ(iV ′V )

?

δ̆(Â)V

?

δ̆(Â)V ′
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At each stage V , the mapping

δ̆(Â)V : ΣV 7−→ R(V )

will be an evaluation, sending λV ∈ ΣV to a real number λV (ÂV ).

We construct ÂV from a given Â ∈ B(H)sa by a certain
approximation, generalising the daseinisation of projections.
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Daseinisation of self-adjoint operators

Let Â ∈ B(H)sa. From the spectral family ÊA = (ÊA
λ )λ∈R, we

obtain a new spectral family in P(V ) by defining

∀λ ∈ R : Ê
δ(bA)V
λ :=

∨
{Q̂ ∈ P(V ) | Q̂ ≤ ÊA

λ }.

This gives a self-adjoint operator δ(Â)V , which is the smallest
operator in V larger than Â in the so-called ‘spectral order’.

Similarly, we can define

∀λ ∈ R : Ê
δi (bA)V
λ :=

∧
{Q̂ ∈ P(V ) | Q̂ ≥ ÊA

λ }.

The corresponding operator δi (Â)V approximates Â from below in
the spectral order.
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Spectral order

Def. (Olson ’71, de Groote ’04): Let Â, B̂ ∈ B(H)sa with spectral

families ÊA, ÊB . The spectral order is defined by

Â ≤s B̂ :⇐⇒ ∀λ ∈ R : ÊA
λ ≥ ÊB

λ .

• The spectral order is a partial order on the self-adjoint
operators in B(H).

• On projections, the spectral order <s and the usual order <
coincide.

• Equipped with the spectral order, B(H)sa becomes a
boundedly complete lattice.

• The spectral order is coarser than the usual order on
self-adjoint operators, i.e. Â <s B̂ =⇒ Â < B̂.

• If Â and B̂ commute, then Â <s B̂ ⇐⇒ Â < B̂.
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The mapping

δV : B(H)sa −→ Vsa

Â 7−→ δ(Â)V

adapts Â to the context V . The mapping δV is non-linear. We
have

• sp(δ(Â)V ) ⊆ sp(Â).

• If Â = P̂ is a projection, then δ(Â)V is a projection, too,
namely δ(Â)V =

∧
{Q̂ ∈ P(V ) | Q̂ ≥ P̂}.

• δ(Â + αÎ )V = δ(Â)V + αÎ .

• If α ≥ 0, then δ(αÂ)V = αδ(Â)V .

• δ(Â)V is not a function of Â in general.

Analogous properties hold for δiV .
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The presheaf of order-reversing functions

We saw that for all V ′ ⊆ V , we have δ(Â)V ′ ≥ δ(Â)V .

We define

δ̆(Â)V : ΣV −→ R(V )

λ 7−→ {λ|V ′(δ(Â)V ′) | V ′ ⊆ V }.

This is an order-reversing, real-valued function on the set
↓V = {V ′ ∈ V(H) | V ′ ⊆ V }.

These functions form a presheaf (Jackson ’06) which we denote by
R�. The restriction is simply given by restriction of the
order-reversing functions.

By construction, δ̆(Â) is a natural transformation from Σ to R�.
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The quantity-value object R↔

The presheaf R� is a candidate for the quantity-value object for
quantum theory.

Clearly, there is a similar construction giving a presheaf R� of
order-preserving functions, and for each Â ∈ B(H)sa, a natural

transformation δ̆i (Â) : Σ → R�, constructed using inner
daseinisation of Â.

We can combine both presheaves into one (product) presheaf R↔.
We consider this presheaf as the quantity value-object for QT.
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Subobjects from pullbacks

A proposition of the form “A ∈ ∆”refers to the real numbers, since
∆ ⊂ R. The real numbers lie outside the topos SetV(H)op (resp.
the formal language, see later).

Now that we have defined R↔, we can construct subobjects of Σ
by pullback: let Θ be a subobject of R↔, then δ̆(Â)−1(Θ) is a
subobject of Σ.

In this way, we get a topos-internal construction of propositions
that do not refer to the real numbers. The ‘meaning’ of such
propositions must be discussed from ‘within the topos’.
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Summary (up to now)

We had in classical theory:

• Physical quantities are morphisms (i.e., functions)

P R,-fA

• Propositions correspond to elements of Sub(P),

• (Pure) states are certain morphisms

Sub(P) {0, 1}.-
ψp

Classical physics is a realist theory. Logical formulas involving
propositions can be manipulated according to the rules of a
deductive system. The logic is Boolean, given by the topos Set of
sets and mappings.
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Summary (up to now)

We saw that in the topos formulation of quantum theory:

• Physical quantities are certain morphisms

Σ R↔.-δ̆(Â)

• Propositions correspond to subobjects S ∈ Sub Σ of the
spectral presheaf Σ,

• Pure states are certain morphisms

Sub Σ ΓΩ,-Tψ

There is a deductive system in the form of intuitionistic logic,
given by the internal logic of the presheaf topos SetV(H)op . This
gives a neo-realist form of quantum theory.
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Formal languages

There is a very elegant way of describing what we are doing: viz to
construct a theory of a physical system S is equivalent to finding a
representation in a topos of a certain formal language, L(S), that
is attached to S .

• The language L(S) will depend on the physical system S , but
not on the theory type (classical, quantum, ...).

• The representation will depend on the theory type.

• We want to allow for a logic that is not Boolean, but still is a
deductive system. We choose intuitionistic axioms for the
language.
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The language L(S)

The language L(S) of a system S is typed. It includes:

• A symbol Σ: the linguistic precursor of the state object.

• A symbol R: the linguistic precursor of the quantity-value
object.

• A set, FL(S)(Σ,R) of ‘function symbols’ A : Σ → R: the
linguistic precursors of physical quantities.

• A symbol Ω: the linguistic precursor of the sub-object
classifier.

• A symbol 1: the linguistic precursor of the terminal object.

• A ‘set builder’ {x̃ | ω}. This is a term of type PT , where x̃ is
a variable of type T , and ω is a term of type Ω.
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Representing the language L(S)

The next step is to find a representation φ of the language L(S) in
a suitable topos.

In a classical theory of the system S , the representation σ is:

• The topos τσ(S) is Set.

• Σ is represented by a symplectic manifold Σσ,S .

• R is represented by the real numbers R; i.e., Rσ,S := R.

• The function symbols A : Σ → R become ordinary functions
Aσ,S : Σσ,S → R.

• The symbol Ω is represented by the set {0, 1} of truth values.
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The topos of quantum theory

• The key ingredient of normal quantum theory on which we
focus is the intrinsic contextuality implied by the
Kocken-Specker theorem.

• In standard theory, we can potentially assign ‘actual values’
only to members of a commuting set of operators.

We think of such a set as a context or ‘classical snapshot’ of
the system.

• This motivates considering the topos SetV(H)op of presheaves
over the category V(H) of abelian subalgebras of B(H).
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• The state object that represents the symbol Σ is the spectral
presheaf Σ.

1. For each abelian subalgebra V , we have that Σ(V ) is the
spectrum of V .

2. The KS theorem is equivalent to the statement that Σ has no
global elements.

3. The spectral presheaf replaces the (non-existent) state space.
4. A proposition represented by a projector P̂ in QT is mapped to

a subobject δ(P̂) of Σ. We call this ‘daseinisation’.

• The quantity-value symbol R is represented by a presheaf
R↔. This is not the real-number object in the topos.

• Physical quantities are represented by arrows δ̆(Â) : Σ → R↔.
They are constructed from the Gel’fand transforms of
daseinised self-adjoint operators.
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Results by Spitters, Heunen and Landsman

Recently, Spitters and Heunen realised that results by Mulvey and
Banaschewski show that the spectral presheaf can be understood
as the internally and constructively defined Gel’fand spectrum of
an internal abelian C ∗-algebra. Seen externally, from an ambient
topos (like Set), this C ∗-algebra can well be non-abelian.

Moreover, the spectral presheaf is an internal locale, which allows
further geometric study, e.g. by constructing Sh(Σ).

They also showed that the quantity-value presheaf R↔ can be
understood using Scott’s interval domains. These are much used in
theoretical computer science. They generalise Dedekind cuts in the
sense that the lower and upper cut do not have to come arbitrarily
close.

These results may allow for generalisations to other topoi (with a
natural number object).



States and truth objects Physical quantities Formal languages Related work

Results by Spitters, Heunen and Landsman

Moreover, there is a constructive theory of measures and
integration, which works best for AW ∗-algebras, since one needs
lots of projections. This brings their work even closer to our von
Neumann algebra-based scheme. We assume that we can use these
results to derive ordinary expectation values and the Born rule
from the topos framework.

Landsman has started to work on the axiomatic aspects of the
topos framework. Presumably, his ‘principle of tovariance’ is
closely related to the construction of suitable formal languages and
their representations.

In his view, geometric logic plays a central rôle. This is the
fragment of logical structure that is preserved under geometric
morphisms.
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Open problems and goals

There are many interesting open questions. Some of the things we
are working on are:

• Description of commutators within the topos SetV(H)op , time
evolution.

• Topos formulation of uncertainty relations.

• Superposition of states.

• Composite systems and entanglement.

• Internal vs. external formulations.

• Space-time concepts.

• ...
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