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Chapter 1

Summary of State-Vector

Reduction paper

In this paper I will give a summary of the description of State Vector reduction

using Topos Theory put forward by Isham in [1]. I will first briefly explain some

mathematical concepts regarding Categories and Topoi. For a more detailed and

complete explanation of the subjects of Topos and Category Theory the readers

should refer to Topos-Physics and reference therein. I would like to point out

that in this short summary I will not report all of the concepts delineated in [1],

but I will just give a general overview of the main results. I will, instead, leave

it to the curious reader to explore in her/his own time the details of the paper

[1].
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1.1 Preliminary definitions

• State-Vector reduction

Given a state ψ, the process of State Vector reduction is the process

whereby, after a series of ”ideal” measurements, represented by the pro-

jection operators P̂1 · · · P̂n, the system is ”transformed” to

|ψ〉 → P̂nP̂n−1 · · · P̂1|ψ〉

• M-set

Let the triple M = (M∗e) be a monoid 1, then for all m ∈M there exists

a map λm : M→M (which denotes left multiplication be m), such that

λm(n) = m ∗n. It is possible to generalize this definition for any set X on

which M acts on the left, obtaining the following:

λm : X → X such that

1) λe = idx

2) λmoλp = λm∗p

Therefore, the collection of all λm for all m ∈ M defines the complete

action of M on X which can be denoted by the general map λ : M×X →

M. We can now identify the pair (X,λ) with an (left) M-set

• Equivariant maps

Given two M-sets (X,λ) and (Y, µ) we define an equivariant map to be a

1A monoid M is a triple M = (M∗ e) where a) M is a set b) ∗ is a binary operation on

M i.e. ∗ : M→M c) e ∈M is the identity element such that e ∗ x = x ∗ e = x
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map f : (X,λ) → (Y, µ) which makes the following diagram commute

X
f //

λm

��

Y

µm

��
X

f
// Y

i.e µmof = foλm

• Left ideal

Given a monoid M, a subset B ⊆M is said to be a left ideal of M provided

it is closed under left multiplication i.e m ∗ b ∈ B whenever b ∈ B and

m ∈M . Schematically the condition of left ideal can be written as follows:

B ⊆ M is a left ideal iff mB := {mb ∈ M |b ∈ B} ⊂ B for all m ∈ M .

(Note that ∅ and M are themselves left ideals)

• BM Category

A BM category is a category which has the following:

1) objects are left M-sets (defined above)

2) arrows are equivariant maps (defined above)

• Subobject classifier in BM

The definition of a Subobject classifier (See Subobject classifier for defi-

nition) requires the existence of two elements:

1) a truth object Ω

2) and a truth arrow T : 1 → Ω.

We would now like to know what these elements are with respect to the

category BM.

1) In BM the truth object is identified with the ”pair” Ω(LM , w) where,
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LM is the set of left ideal on M (note that ∅ and M belong to LM ) and

w : M×LM → LM is such that w(m,B) = {m′ ∈M |m′
m ∈ B} = wm(B)

is a left ideal.

It is easy to show that composition is defined as follows wmown = wmn.

In fact we have

(wnowm)B = wn(wm(B))

= wmo{m
′
∈M |m

′
m ∈ B}

= {n
′
m

′
∈M |n

′
m

′
nm ∈ B}

= wnm

2) In the category BM the arrow True T : 1 → Ω is a function T : {0} →

LM such that, T(0)=M is the largest left ideal on M.

Given two elementsX,Y ∈ BM and an inclusion map k : X → Y (which is

equivariant), the workings of the T arrow can be described by the following

diagram:

Diagram 1.1

X
� � k //

λm

��

��

Y

µm

��





X
� � k //

l

��

Y

χk

��
1

T // LM

The map χ, which appears in the above diagram, is called a characteristic
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function and is defined as follows: for a given m, χ is an M-equivariant

map, i.e.

Diagram 1.2

X
χ //

λm

��

LM

αm

��
X χ

// LM

commutes.

If we restrict the definition χ to a particular inclusion map (our case

k), then χ is identified with the map χk : (Y,M) → Ω such that, for a

particular m ∈ M , we have χk : Y → LM . We now want to show that

the diagram 1.1 commutes, this can be easily done since each of the 3

component diagrams (2 small squares and the big rectangle) commute.

The fact that diagram 1.1 commutes implies that,for all y ∈ Y , the action

of the map χk can be defined as follows.

χk(y) = {m|µm(y) ∈ X} (1.1)

Since we know that LM is the set of left ideals on M, in order to check

whether the definition of χk(y) by 1.1 is correct, we need to show that

χk(y) is a left ideal.

Proof 1.1 We know that X ∈ BM , therefore ∀m ∈ M and x ∈ X,

m ∗ x ∈ X. From definition of χk(y) = {m|µm(y) ∈ X} it is clear that

χk(y) ⊆ M since χk(y) contains the subset of elements in M such that

the condition µm(y) ∈ X is satisfied. So all we need to show is that
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m
′
µm(y) ∈ X for all m

′ ∈ M . Call µm(y) = x then, since X ∈ BM , it

follows that m
′ ∗ x ∈ X ∀m′ ∈M .

Conversely if we were given a general equivariant map χ : Y → Lm then,

Xχ ⊂ Y := {y ∈ Y |χ(y) = M = 1} is an M-invariant subset of Y for

Y ∈ BM .

Proof 1.2 Recall that M is itself a left ideal therefore, since χ is an equiv-

ariant map (recall diagram 1.2) we have the following equality

χoλm(x) = χ(m ∗ x) = αmoχ(x)

We now want to show that ∀m ∈ M m ∗ x ∈ X for x ∈ X, i.e. we want

to show that χ(m ∗ x) = M . Since χ is an equivariant map we get

χoλm(x) = χ(m ∗ x)

= αmoχ(x)

= αmM

= m ∗M

= M

• Topos BM

The category BM defined above is actually a Topos (see Topos), i.e. it

can be shown that BM has the following objects:

1. BM has an initial (0) and a terminal (1) object

2. BM has pullbacks

3. BM has pushouts
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4. BM has exponentiation, i.e. BM is such that for every pair of objects

X and Y in BM exists the map Y X

5. T has a subobject classifier

1.2 Topos interpretation of State-Vector reduc-

tion and Truth Values

In order to understand the interpretation of State Vector reduction using Topos

Theory put forward by Isham, we first need to understand how truth values for

certain propositions can be defined in terms of Topos Theory. The connection

between the two will be explained later on in this summary. For a more in depth

discussion on truth values defined in terms of Topos Theory, the reader should

refer to Topos and Logic.

From Topos Theory we know that truth values are identified with elements

of the subobject classifier. In the Topos of M-sets elements of the subobject

classifier are left ideals, therefore we, somehow, have to try to interpret equa-

tion 1.1 as representing the truth value of a proposition. In his paper, Isham

suggests an interpretation of equation 1.1 as an indication of how close is an

element y, to belong or not, to a certain set (in this case X). Pictorially speak-

ing, the right side of equation 1.1 should be seen as an indication/quantification

of the amount of different ways(=elements of M) in which an element y can

be made to belong to a subset X, such that, if an element y actually belongs

to X, it will continue doing so after any element of M is applied to it. For

example given X := {x ∈ X|y = human female, short black hair} we then
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consider two elements y1 = {y1 ∈ Y |y1 = male, blond, long hair, brown eyes}

and y2 = {y2 ∈ Y |y2 = female, brown eyes, blond,black hair} in the set Y :=

{y ∈ Y |y = human} and . Now if the monoid M were formed by M :=

{dye hair, cut hair and put blue contact lenses, cut hair and put glasses}, then

any but one of the elements of M applied to y2 would send y2 in X, while no

element of M would send y1 in X. Therefore we would say that y2 is nearly in

X while y1 is not at all in X. This is obviously a very simple example, but it

gives the general idea behind the concept of truth values using Topos Theory

put forward by Isham in [1], and, more important it conveys the idea that the

truthfulness of a proposition (in the example above ( y2 ∈ X)) is directly pro-

portionate to the amount of elements of a given monoid M which ”send” y2

into. In fact, for a given Topos, Isham identifies the set of truth values for the

proposition ”y is an element of X” as follows

[y ∈ X]BM := {m ∈M |my ∈ X} (1.2)

where the right hand side is a left ideal in the monoid M, as was proved above

(see equation 1.1 and proof). If y is actually in X then, the right hand side of

equation 1.2 will be M itself.

Furthermore it can be shown that 1.2 can be generalized for any subset K ⊂ Y

as follows:

[y ∈ K]BM := {m ∈M |my ∈ mK} (1.3)

where mK = Km := {my ∈ Km|y ∈ Y }

The importance of defining truth values in terms of a Topos of M-sets, as in

equation 1.3, is the fact that it immediately suggests a way of describing the

process of state-vector reduction. In fact, as previously stated, the right hand
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side of equation 1.3 is to be interpreted as the amount of possible ”changes” that

can be made to a certain element with it still belonging to a given subset. If we

now tried to find, in Quantum Mechanics, an analogue of this procedure the first

thing that comes to mind is the process of State Vector reduction (see 1.1). In

fact, if we had a certain subset HP̂ , of H and some vector |ψ〉 /∈ HP̂ , we could

apply a series of ”transformations” (finite products of projection operators)

represented by projection operators, such that P̂n · · · P̂1|ψ〉 ∈ HP̂ . In his paper

Isham used this idea to define a quantum analogue of equation 1.3. The Topos

(BM), which he chose for this task is, the Topos BPrP (H), where PrP (H) is

the set formed by all finite products of projection operators, and the elements

of BPrP (H) are subsets of the Hilbert space on which these finite products

act on the left. A more in depth explanation of the Topos BPrP (H) and its

derivation will be given in the next section, now I will just report how truth

values of Quantum Propositions (quantum analogue of equation 1.3) are defined

within BPrP (H). Namely we have:

[|ψ〉 ∈ HP̂ ]BPrP (H) = {P̂n · · · P̂1|P̂n · · · P̂1|ψ〉 ∈ P̂n · · · P̂1|ψ〉 ∈ HP̂ } (1.4)

where the same set of ”transformations” is applied to both the vector |ψ〉 and

to the Hilbert space HP̂ . We could also write equation 1.4 in terms of rays and

projective limit:

[[|ψ〉] ∈ PHP̂ ]BPrP (H) = {P̂n · · · P̂1|[P̂n · · · P̂1|ψ〉] ∈ lP̂n···P̂1
PHP̂ } (1.5)

As can be seen, truthfulness of a proposition is directly proportioned to the

amount of elements contained/allowed in the right hand side of 1.4 or 1.5.

It is now appropriate to give some explanations on equations 1.4 and 1.5. Since

these equations are related to the process of State Vector reduction, I will now
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describe how this process is interpreted in the language of Topos theory.

1.2.1 State-Vector Reduction in the language of Topos

Theory

The first step towards the description of the process of State-Vector reduction

using Topos Theory, is to choose a suitable monoid M in terms of which to define

the Topos BM. One natural choice would be to identify the set of all bounded

linear operators L(H) on H with a monoid. This identification is correct since

each element of the triple (L(H), ∗, e) is well defined. In fact the ∗ operation

can be identified with operator product, while the identity element e can be

associated with the unit operator 1̂. Since we would like to work in the Topos

BM, we need to define a set on which the monoid L(H) acts on the left. For

this set we have two choices:

1. we could either have the set H

2. or we could have the set of projective Hilbert spaces PH.2

For choice number 1 we can define the action of L(H) on H as follows:

lÂ(|ψ〉) := Â|ψ〉

∀ Â ∈ L(H) and |ψ〉 ∈ H.

For choice number 2 instead we would have the following action:

lÂ([|ψ〉]) := [Â|ψ〉]
2 The projective Hilbert space of a complex Hilbert space H is the set of equivalence classes

of vectors V in H with V 6= 0. The equivalence relation is given by the following V ∼ W

iff V = λW , where λ is a scalar. The equivalence classes with respect to ∼ are called the

projective rays. The definition of projective Hilbert space implies that the states ψ and λψ

represent the same physical state.
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where [Â|ψ〉] denotes the projective ray that passes through Â|ψ〉3 At this point

it is worth noting that the action of L(H) can be extended to any close linear

subspaces of both H and PH (I will not go into the details of the above state-

ment, the reader should refer to [1]).

So, in Quantum Mechanics, we have ,now, found a possible candidate for a

monoid i.e. L(H). We know that the set of all M-sets (sets on which the

monoid M acts on the left) form a topos, since L(H) acts on H, we could iden-

tify the Topos BL(H) with the set of all Hilbert spaces. The only problem with

this construction is that L(H) has no real interesting physical meaning, there-

fore, we need to choose some subset of L(H) to which can be given a physical

interpretation. Isham, in his paper, chooses the subset PrP (H) ⊂ L(H) of all

finite products of projection operators. The action of PrP (H) on H would then

be the following:

P̂n · · · P̂1|ψ〉 = |ω〉

We can now give a well defined mathematical context to the previously just

stated equations 1.4, and 1.5. Namely, within the context of the Topos of

PrP (H)-sets, the elements of the subobject classifier are identified with the

right hand side of equations 1.4, or 1.5 which are left ideals, therefore they

represents truth-values in the Topos PrP (H)-sets. Moreover, since truth values

can be interpreted as a set of possible ”transformations”, the right hand side

of equations 1.4, and 1.5 is ulteriorly interpreted as exemplifying the process

of State Vector reduction. There are, however, two problems concerning the

identification of |ψ〉 → P̂n · · · P̂1|ψ〉 with the process of State Vector reduction,

3Note that if Â|ψ〉 = 0, then [Â|ψ〉] = [0] where [0] is such that lÂ([0]) = [0]. Therefore

the action of L(H) should really be on PH ∪ [0], where [0] should be identified with the

accumulation point of the action.
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namely

1. Non uniqueness of product of projections: more than one collection of

projection operators have the same product.

2. Normalisation issue: State Vector reduction should really be of the form

|ψ〉 → P̂n · · · P̂1|ψ〉
||P̂n · · · P̂1|ψ〉||

(1.6)

therefore we can not allow ||P̂n · · · P̂1|ψ〉|| = 0

1. Problem number one can be solved by choosing, instead of a monoid

formed by products of projection operators, a monoid formed by strings of

projection operators, i.e. SP (H), whose elements are P := {P̂n, P̂n−1, · · · , P̂1}.

Within this monoid the product is identified with the concatenation of

strings, while the unit element is the unit operator. Given this monoid,

the action of a string P on a state |ψ〉 would be identified (counterfac-

tually) as the subsequent application of the individual projector oper-

ators which make up the string, i.e. P̂ |ψ〉 = P̂nP̂n−1 · · · P̂1|ψ〉, where

P̂ = P̂nP̂n−1 · · · P̂1 is called the reduction of P := {P̂n, P̂n−1, · · · , P̂1}.

It is easy to see that if we adopted this new monoid, problem 1) would

disappear, since we are now dealing with strings of projectors rather than

products, and strings are uniquely defined. It is only counterfactually that

we define the action of a string on a State Vector as a succession of appli-

cation of the individual projector operators which make up the string.

In this context, equation 1.5 becomes

[[|ψ〉] ∈ PHP̂ ]BSP (H) = {Q ∈ SP (H)|[Q̂|ψ〉] ∈ lQ̂PHP̂ } (1.7)

2. Regarding the normalisation issue, Isham, in his paper [1], proposed two
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methods to solve Normalisation issue. I will hereby shortly report both of

them

• The first method involves the introduction of a new type of category

whose creation is based on the following reasoning: we want the

monoid SP (H) so that we can deal with the ”uniqueness” problem,

but we also require strings P ∈ SP (H) to be such that the product of

the individual projectors composing the string is different form zero.

So, what we are really interested in, is the monoid SP (H)0 whose

elements are such that the property P̂ 6= 0 holds. The caveat with

this monoid is that it is not closed under product composition, i.e.

given P 6= 0 and Q 6= 0 it is not necessarily the case that PQ 6= 0.

This feature makes SP (H)0 a partial monoid. A way of taking into

account this feature is by defining a new category χ, such that

– Objects Ξ are identified with collections of non zero vectors in

H such that if |ψ〉 ∈ Ξ, then λ|ψ〉 ∈ Ξ for all λ ∈ C∗
4

– Arrows are identified with Hom(Ξ1,Ξ2) : {P ∈ SP (H)0|∀|ψ〉 ∈

Ξ1, P̂ |ψ〉 ∈ Ξ2} and the composition of arrows is identified with

the concatenation of strings.

As we can see, the elements of the monoind SP (H) are now identified

we morphisms in this new category. This identification is desirable

since morphisms behold the property of being a partial monoid i.e.,

two arrows can be composed iff the domain of one coincides with the

codomain of the other. So we have solved the normalization issue,

but we have encountered a new problem namely: the set Ξ of non zero
4C∗ is just C without the zero element
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vectors in H has no direct physical meaning. Isham noticed, though,

that there exists a polar operation which takes you from subspaces

of the Hilbert space, to strings of projector operators and vice versa.

By using this polar operation and its properties (the details of which

I leave up to the reader to find) it is possible to restrict the objects Ξ

to a particular type of subset F of H, such that the elements φ of F

will have the property that they are ”reducible” with respect to the

strings belonging to the polar F o of F i.e. ∀ Q̂ ∈ F o and ∀ φ ∈ F ,

then Q̂φ 6= 0. This condition of reducibility becomes the context

in which the elements of the category χ acquire physical meaning.

Within this framework truth values of Quantum propositions of the

form A ∈ ∆, and subsequently the processo of state vector reduction

is identified as follows:

[|φ〉 ∈ HA∈∆]χ,Ξ := {Q ∈ Hom(Ξ·)|Q̂|φ〉 ∈ Q̂HA∈∆} (1.8)

• The second method for solving the normalisation issue requires the

introduction of a certain presheaf. I will not explain what a presheaf

is and the properties it has, the interested reader should refer to

Presheaves for further information.

The presheaf that we are interested in (in this particular context) is

the reduction presheaf R defined on the category ˜SP (H)0. This

category is essentially the same as the category SP (H)0, previously

defined, but with the difference that the arrows between two objects

Q, and Q1 have to be intended as a ”reduction” of the string Q

to the string Q1, by an elimination of some projector operator, i.e.

Hom(Q,Q1) := {S ∈ SP (H)0|Q = Q1 ? S} where ? is string con-

15

http://topos-physics.org/topos/Presheaves


catenation. This definition of an arrow Hom(Q,Q1) implies that the

string Q1 can be derived from the string Q if we ”right” divided Q

by the string S, i.e. Q1 is a ”reduction” of the string Q by an amount

S. The reason why Isham defines arrows in ˜SP (H)0, as mentioned

above, is because this definition implies the following: if Q̂|ψ〉 = 0

and Q = Q2 ? S, then Q̂2 ? S|ψ〉 = Q̂2Ŝ|ψ〉 = 0, which implies that

Ŝ|ψ〉 = 0. This property will enable us to overcome the normaliza-

tion issues, as will be delineated later on.

Given this new category, roughly speaking, what the presheaf R does

is to associate to each object Q in ˜SP (H)0, the set of vectors which

are reducible with respect to Q, and to each arrow S ∈ Hom(Q,P )

in ˜SP (H)0 between two objects Q and P, the arrow between the re-

spective subspaces of reducible vectors, i.e. R(S) : R(Q) → R(P )

such that R(S)|ψ〉 := Ŝ|ψ〉.

In this context the State Vector reduction can be derived as follows:

since

|ψ〉 R(Q̂1)→ Q̂1|ψ〉
R(Q̂2)→ Q̂2Q̂1|ψ〉 · · ·

R(Q̂q)→ Q̂qQ̂q−1 · · · Q̂1|ψ〉 (1.9)

we can identify the State Vector reduction as

|ψ〉 R(Q̂q)R(Q̂q−1)···R(Q̂1)−→ Q̂qQ̂q−1 · · · Q̂1|ψ〉
||Q̂qQ̂q−1 · · · Q̂1|ψ〉||

=
Ŝ|ψ〉
||Ŝ|ψ〉||

(1.10)

The reason why, given this formulation, the normalisation issue does

not occur can be easily understood with the aid of an example. Imag-

ine we had two strings of projector operators:

P1 := {Q̂1, Q̂2, Q̂3, Q̂4, Q̂5, Q̂6} and P2 := {Q̂1, Q̂2}.

We then define an arrow between them by S := {Q̂3, Q̂4, Q̂5, Q̂6} :=
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P1 → P2 such that P2 ? S = P1. The respective elements in the

presheaf R are:

R(P1) := {|ψ〉 ∈ H|P̂1|ψ〉 6= 0,

R(P2) := {|φ〉 ∈ H|P̂1|φ〉 6= 0,

R(S) : R(P1) → R(P2), such that R(S)|ψ〉 = Ŝ|ψ〉.

If we then choose a vector |ψ〉 ∈ R(P1), and applied the State Vec-

tor reduction procedure so to ”reduce” it to a vector φ ∈ R(P2),

we would have to apply the string of projections S, so as to obtain

an analogue of equation 1.10 where q=6 and R(Q̂1) is replaced by

R(Q̂3). In order to do so we notice that the equality

P̂1|ψ〉 = P2 ? S|ψ〉 6= 0 (1.11)

together with the above mentioned properties of morphisms in the

category ˜SP (H)0 imply that S|ψ〉 6= 0. Therefore, no normailsation

problems occur.

Isham additionally defined the truth value of a Quantum Proposi-

tion within the Topos ˜SP (H)0 as follows:

given a subset HA∈∆ ⊂ H, the truth value of the proposition |ψ〉 ∈

HA∈∆ is

[|ψ〉 ∈ HA∈∆] ˜SP (H)0,Q
:= {S ∈ Hom(Q, ·)|Ŝ|ψ〉 ∈ ŜHA∈∆} (1.12)
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